Monday 5 March 2018

تتحرك متوسط التمهيد ص


(ج) (4،5،4،6)، 3) سلسلة زمنية: بداية 1 نهاية 4 تردد 1 1 نا 4.333333 5.000000 نا هنا كنت أحاول أن أفعل متوسط ​​المتداول الذي أخذ في الاعتبار آخر 3 أرقام لذلك كنت أتوقع للحصول على رقمين فقط يعود 8211 4.333333 و 5 8211 وإذا كانت هناك ستكون هناك قيم نا اعتقدت أنهم 8217d يكون في بداية التسلسل. في الواقع اتضح هذا هو ما يتحكم في المعلمات 8216sides8217: الجانبين لفلتر التفاف فقط. وإذا كانت المعاملات 1 في معاملات الترشيح للقيم السابقة فقط إذا كانت الجوانب 2 مركزة حول الفارق الزمني 0. وفي هذه الحالة يجب أن يكون طول المرشح غريبا، ولكن إذا كان الأمر كذلك، فإن المزيد من المرشح يكون في الوقت المحدد من الخلف. حتى في الدالة 8216mav8217 لدينا المتوسط ​​المتداول يبدو كلا الجانبين من القيمة الحالية بدلا من مجرد القيم السابقة. يمكننا تعديل ذلك للحصول على السلوك الذي نريده: مكتبة غ (حديقة الحيوان) غ رولين (ج (4،5،4،6)، 3) 1 4.333333 5.000000 كما أدركت أنني يمكن أن سرد كافة الوظائف في حزمة مع 8216ls8217 وظيفة حتى I8217ll يكون مسح قائمة zoo8217s من الوظائف في المرة القادمة أنا بحاجة إلى القيام بشيء ما سلسلة الوقت ذات الصلة 8211 هناك 8217ll ربما يكون بالفعل وظيفة لذلك غ ليرة سورية (كوتاكاج: زوكوت) 1 حصص. Datequot الحصص. Datequot الحصص. Date. tsquot 4 والحصص. تاريخ. yearmonquot الحصص. تاريخ. yearqtrquot الحصص. yearmonquot 7 حصص. yearmon. defaultquot الحصص. yearqtrquot الحصص. yearqtr. defaultquot 10 حصص. zooquot الحصص. zoo. defaultquot الحصص. zoreququot 13 حصص. zooreg. defaultquot quautoplot. zooquot كوتبيند. زوكوت 16 كوتورداتاكوت كوتورداتا. ديفولت كوت كوتورداتالت-كوت 19 كوتفاسيتفريكوت كوتورمات. yearqtrquot كوتفورتيفي. زوكوت 22 كوتفريكنسيلت-كوت كوتيفيلز. زوكوت كوتندكسوت 25 كوتندكسلت كوت كوتيندكس 2 تشاركوت كوتيس. ريجولاركوت 28 كوت. زوكوت كوتاك. بار. ليستوت q أوتماتشكوت 31 كوتيماتش. ديفولتوت كوتاتيون. كوتنا. splinequot كوتنا. spline. defaultquot كوتنا. StructTSquot 46 كوتنا. زوكوت 55 cutpanel. plot. customquot qupanel. plot. defaultquot qupanel. points. itsquot 58 cutpanel. points. tisquot cutpanel. points. tsquot qupanel. points. zooquot 61 cutpanel. polygon. itsquot cutpanel. polygon. tisquot cutpanel. polygon. tsquot 64 كوتابيل. بوليجون. gments. zooquot 73 qupanel. text. itsquot qupanel. text. tisquot qupanel. text. tsquot 76 qupanel. text. zooquot quplot. zooquot ququantile. zooquot 79 qurbind. zooquot quread. zooquot qurev. zooquot 82 كوترولابليكوت كوترولابليركوت كوترولماكسكوت 85 cutrollmax. defaultquot krollrollmaxrquot quotrollmeanquot 88 quotrollmean. defaultquot quotrollmeanrquot quotrollmedianquot 91 quotrollmedian. defaultquot quotrollmedianrquot quotrollsumquot 94 quotrollsum. defaultquot quotrollsumrquot quotscalexyearmonquot 97 quotscalexyearqtrquot quotscaleyyearmonquot quotscaleyyearqtrquot 100 quotSys. yearmonquot quotSys. yearqtrquot quottimelt-مثل 103 quotwrite. zooquot quotxblocksquot quotxblocks. defaultquot 106 quotxtfrm. zooquot quotyearmonquot quotyearmontransquot 109 quotyearqtrquot quotyearqtrtransquot كوزوكوت 112 كوززوريغوت كن اجتماعيا، مشاركة R لتحليل السلاسل الزمنية تحليل السلاسل الزمنية يشرح لك هذا الكتيب كيفية استخدام البرنامج الإحصائي R لتنفيذ بعض البساطة ناليسس الشائعة في تحليل بيانات السلاسل الزمنية. يفترض هذا الكتيب أن القارئ لديه بعض المعرفة الأساسية لتحليل السلاسل الزمنية، والتركيز الرئيسي للكتيب ليس لشرح تحليل السلاسل الزمنية، وإنما شرح كيفية إجراء هذه التحليلات باستخدام R. إذا كنت جديدا على سلسلة زمنية تحليل، وتريد معرفة المزيد عن أي من المفاهيم المقدمة هنا، أود أن أوصي كتاب جامعة مفتوحة 8220Time Series8221 (رمز المنتج M24902)، وهي متاحة من متجر جامعة المفتوحة. في هذا الكتيب، سوف أستخدم مجموعات بيانات السلاسل الزمنية التي تم توفيرها من قبل روب هيندمان في مكتبة بيانات سلسلة الوقت الخاصة به في روبجيندمانتسدل. إذا کنت تحب ھذا الکتیب، قد ترغب أیضا في الاطلاع علی کتیبي حول استخدام R للإحصاءات الطبیة الحیویة، a-little-book-of-r-for-biomedical-statistics. readthedocs. org. وكتيب بلدي حول استخدام R لتحليل متعدد المتغيرات، القليل من الكتاب، قراءة البيانات سلسلة الوقت أول شيء سوف تريد القيام به لتحليل البيانات سلسلة الوقت الخاص بك وسوف يكون لقراءتها في R، ومؤامرة سلسلة زمنية. يمكنك قراءة البيانات إلى R باستخدام وظيفة المسح الضوئي ()، والتي تفترض أن بياناتك لنقاط زمنية متعاقبة موجودة في ملف نص بسيط يحتوي على عمود واحد. على سبيل المثال، يحتوي ملف robjhyndmantsdldatamisckings. dat على بيانات عن عمر وفاة الملوك المتعاقبين لإنجلترا، بدءا من وليام الفاتح (المصدر الأصلي: هيبل و مكليود، 1994). تبدو مجموعة البيانات كما يلي: تم عرض الأسطر القليلة الأولى فقط من الملف. الأسطر الثلاثة الأولى تحتوي على بعض التعليقات على البيانات، ونحن نريد أن نتجاهل هذا عندما نقرأ البيانات إلى R. يمكننا استخدام هذا باستخدام المعلمة 8220skip8221 للدالة المسح الضوئي ()، الذي يحدد عدد الخطوط في الجزء العلوي من ملف لتجاهل. لقراءة الملف في R، تجاهل الخطوط الثلاثة الأولى، ونحن نكتب: في هذه الحالة سن الموت من 42 ملوك المتعاقبة انكلترا قد قرأ في المتغير 8216kings8217. بمجرد قراءة بيانات سلسلة الوقت إلى R، الخطوة التالية هي تخزين البيانات في كائن سلسلة زمنية في R، بحيث يمكنك استخدام R8217s العديد من الوظائف لتحليل بيانات سلسلة الوقت. لتخزين البيانات في كائن سلسلة زمنية، نستخدم الدالة تيسي () في R. على سبيل المثال، لتخزين البيانات في المتغير 8216kings8217 ككائن سلسلة زمنية في R، نكتب: أحيانا مجموعة بيانات سلسلة الوقت التي قد تكون قد جمعت على فترات منتظمة كانت أقل من سنة، على سبيل المثال، شهرية أو ربع سنوية. في هذه الحالة، يمكنك تحديد عدد المرات التي تم جمع البيانات فيها سنويا باستخدام المعلمة 8216frequency8217 في الدالة تيسي (). للحصول على بيانات سلسلة زمنية شهرية، يمكنك تعيين التردد 12، بينما لبيانات سلسلة زمنية ربع سنوية، يمكنك تعيين التردد 4. يمكنك أيضا تحديد السنة الأولى التي تم جمع البيانات، والفاصل الزمني الأول في ذلك العام باستخدام المعلمة 8216start8217 في الدالة تيسي (). على سبيل المثال، إذا كانت نقطة البيانات الأولى تتوافق مع الربع الثاني من عام 1986، يمكنك تعيين ستارتك (1986،2). ومن الأمثلة على ذلك مجموعة بيانات عن عدد المواليد شهريا في مدينة نيويورك، من كانون الثاني / يناير 1946 إلى كانون الأول / ديسمبر 1959 (التي جمعتها نيوتن أصلا). هذه البيانات متوفرة في ملف robjhyndmantsdldatadatanybirths. dat يمكننا قراءة البيانات في R، وتخزينها ككائن سلسلة زمنية، عن طريق كتابة: وبالمثل، يحتوي ملف robjhyndmantsdldatadatafancy. dat المبيعات الشهرية لمتجر للهدايا التذكارية في بلدة منتجع الشاطئ في كوينزلاند، أوستراليا، فور جانوري 1987-ديسمبر 1993 (أورجنال داتا فروم ويلوريت أند هيندمان، 1998). يمكننا قراءة البيانات إلى R عن طريق كتابة: التآمر سلسلة الوقت مرة واحدة كنت قد قرأت سلسلة زمنية في R، فإن الخطوة التالية هي عادة لجعل مؤامرة من البيانات سلسلة الوقت، والتي يمكنك القيام به مع وظيفة plot. ts () في R. على سبيل المثال، لرسم سلسلة زمنية من سن الموت من 42 ملوك المتعاقبة من انكلترا، ونحن نكتب: يمكننا أن نرى من مؤامرة الوقت أن هذه السلسلة الزمنية يمكن وصفها ربما باستخدام نموذج المضافة، منذ التقلبات العشوائية في البيانات ثابتة تقريبا في الحجم مع مرور الوقت. وبالمثل، لرسم سلسلة زمنية من عدد المواليد شهريا في مدينة نيويورك، ونحن نكتب: يمكننا أن نرى من هذه السلسلة الزمنية أنه يبدو أن هناك تباين موسمي في عدد المواليد شهريا: هناك ذروة كل صيف ، وحوض صغير كل شتاء. ومرة أخرى، يبدو أن هذه السلسلة الزمنية يمكن وصفها على الأرجح باستخدام نموذج مضاف، حيث أن التقلبات الموسمية ثابتة تقريبا في الحجم بمرور الوقت ولا يبدو أنها تعتمد على مستوى السلاسل الزمنية، ويبدو أن التقلبات العشوائية أيضا ثابت تقريبا في الحجم مع مرور الوقت. وبالمثل، لرسم سلسلة زمنية من المبيعات الشهرية لمتجر الهدايا التذكارية في بلدة منتجع الشاطئ في كوينزلاند، أستراليا، ونحن نكتب: في هذه الحالة، يبدو أن نموذج المضافة ليست مناسبة لوصف هذه السلسلة الزمنية، منذ حجم من التقلبات الموسمية والتقلبات العشوائية ويبدو أن زيادة مع مستوى السلاسل الزمنية. وبالتالي، قد نحتاج إلى تحويل السلاسل الزمنية من أجل الحصول على سلسلة زمنية محولة يمكن وصفها باستخدام نموذج مضاف. على سبيل المثال، يمكننا تحويل السلاسل الزمنية من خلال حساب السجل الطبيعي للبيانات الأصلية: هنا يمكننا أن نرى أن حجم التقلبات الموسمية والتقلبات العشوائية في السلاسل الزمنية المحولة من السجل تبدو ثابتة تقريبا مع مرور الوقت، وتفعل لا تعتمد على مستوى السلاسل الزمنية. وبالتالي، يمكن وصف السلسلة الزمنية المحولة السجل باستخدام نموذج مضاف. تحلیل السلاسل الزمنیة یعني تحلیل السلاسل الزمنیة فصلھا إلی مکوناتھا التأسیسیة، وھي عادة مکونات اتجاهیة ومکون غیر منتظم، وإذا کانت سلسلة زمنیة موسمیة، وھي عنصر موسمي. تحلیل البیانات غیر الموسمية تتألف السلاسل الزمنیة غیر الموسمیة من عنصر الاتجاه ومکون غیر منتظم. تحليل السلسلة الزمنية ينطوي على محاولة لفصل السلاسل الزمنية في هذه المكونات، وهذا هو، تقدير عنصر الاتجاه والمكون غير النظامي. ولتقدير عنصر الاتجاه لسلسلة زمنية غير موسمية يمكن وصفها باستخدام نموذج مضاف، من الشائع استخدام طريقة التجانس، مثل حساب المتوسط ​​المتحرك البسيط للمسلسلات الزمنية. يمكن استخدام الدالة سما () في حزمة 8220TTR8221 R لتسلسل بيانات السلاسل الزمنية باستخدام متوسط ​​متحرك بسيط. لاستخدام هذه الدالة، نحتاج أولا إلى تثبيت حزمة 8220TTR8221 R (للحصول على إرشادات حول كيفية تثبيت حزمة R، راجع كيفية تثبيت حزمة R). بمجرد تثبيت حزمة 8220TTR8221 R يمكنك تحميل حزمة 8220TTR8221 R عن طريق كتابة: يمكنك ثم استخدام الدالة 8220SMA () 8221 لتسلسل البيانات سلسلة الوقت. لاستخدام الدالة سما ()، تحتاج إلى تحديد الترتيب (سبان) للمتوسط ​​المتحرك البسيط، باستخدام المعلمة 8220n8221. على سبيل المثال، لحساب متوسط ​​متحرك بسيط من النظام 5، نقوم بتعيين n5 في الدالة سما (). على سبيل المثال، كما نوقش أعلاه، فإن السلاسل الزمنية لسن الوفاة من 42 ملوك متتالي انكلترا يبدو غير موسمي، ويمكن وصفها على الأرجح باستخدام نموذج اضافي، حيث ان التقلبات العشوائية في البيانات هي ثابتة تقريبا في الحجم فوق الوقت: وبالتالي، يمكننا محاولة لتقدير عنصر الاتجاه من هذه السلسلة الزمنية من خلال تمهيد باستخدام المتوسط ​​المتحرك بسيط. لتسلسل السلاسل الزمنية باستخدام متوسط ​​متحرك بسيط من النظام 3، ومؤامرة البيانات سلسلة الوقت ممهدة، ونحن نكتب: لا يزال يبدو أن هناك الكثير جدا من التقلبات العشوائية في السلاسل الزمنية ممهدة باستخدام المتوسط ​​المتحرك بسيط من النظام 3. وبالتالي، لتقدير عنصر الاتجاه بشكل أكثر دقة، قد نرغب في محاولة تمهيد البيانات بمتوسط ​​متحرك بسيط من أجل أعلى. هذا يأخذ قليلا من التجربة والخطأ، للعثور على كمية مناسبة من التمهيد. على سبيل المثال، يمكننا أن نحاول استخدام متوسط ​​متحرك بسيط من أجل 8: البيانات ممهدة مع متوسط ​​متحرك بسيط من النظام 8 يعطي صورة أوضح عن عنصر الاتجاه، ويمكننا أن نرى أن سن وفاة الملوك الإنجليزية يبدو أن قد انخفض من حوالي 55 سنة إلى حوالي 38 سنة في عهد الملوك الأول 20، ثم ارتفع بعد ذلك إلى حوالي 73 سنة بحلول نهاية عهد الملك ال 40 في السلسلة الزمنية. تحلیل البیانات الموسمية تتألف السلاسل الزمنیة الموسمیة من عنصر الاتجاه، والعنصر الموسمي والمکون غیر النظامي. تحليل السلسلة الزمنية يعني فصل السلسلة الزمنية في هذه المكونات الثلاثة: أي، تقدير هذه المكونات الثلاثة. لتقدير مكون الاتجاه والمكون الموسمية لسلسلة زمنية موسمية يمكن وصفها باستخدام نموذج مضاف، يمكننا استخدام الدالة 8220decompose () 8221 في R. تقوم هذه الدالة بتقدير مكونات الاتجاه، الموسمية، وغير المنتظمة لسلسلة زمنية يمكن وصفها باستخدام نموذج المضافة. الدالة 8220decompose () 8221 تقوم بإرجاع كائن قائمة كنتيجة له ​​حيث يتم تخزين تقديرات المكون الموسمية وعنصر الاتجاه والمكون غير النظامي في العناصر المسماة من كائنات القائمة تلك التي تسمى 8220seasonal8221 و 8220trend8221 و 8220random8221 على التوالي. على سبيل المثال، كما نوقش أعلاه، فإن السلاسل الزمنية لعدد المواليد شهريا في مدينة نيويورك موسمية مع ذروة كل صيف وحوض كل شتاء، ويمكن وصفها على الأرجح باستخدام نموذج مضافة منذ التقلبات الموسمية والعشوائية ويبدو أن تكون ثابتة تقريبا في الحجم مع مرور الوقت: لتقدير الاتجاه، المكونات الموسمية وغير النظامية من هذه السلسلة الزمنية، ونحن نكتب: يتم تخزين القيم المقدرة للمكونات الموسمية والاتجاه وغير النظامية الآن في متغيرات بيرثستيمزيريزكومبوننتسونسونال، بيرثستيمزيريزكومبوننتسترند و بيرثستيمزيريزكومبونينتساندوماند. على سبيل المثال، يمكننا طباعة القيم المقدرة للمكون الموسمي عن طريق كتابة: يتم إعطاء العوامل الموسمية المقدرة للأشهر من كانون الثاني (يناير) إلى كانون الأول (ديسمبر)، وهي نفسها لكل سنة. وأكبر عامل موسمية هو يوليو (حوالي 1.46)، والأدنى هو لشهر فبراير (حوالي -2.08)، مما يشير إلى أن هناك على ما يبدو ذروة في المواليد في يوليو وحوض في الولادات في فبراير من كل عام. يمكننا رسم الاتجاه المقدر والمكونات الموسمية وغير المنتظمة للسلاسل الزمنية باستخدام الدالة 8220plot () 8221، على سبيل المثال: تظهر المؤامرة أعلاه السلسلة الزمنية الأصلية (أعلى) ومكون الاتجاه المقدر (الثاني من الأعلى) والمكون الموسمي المقدر (الثالث من أعلى)، والمكون غير المنتظم المقدر (أسفل). ونحن نرى أن مكون الاتجاه المقدر يظهر انخفاضا طفيفا من حوالي 24 في عام 1947 إلى حوالي 22 في عام 1948، تليها زيادة مطردة من ثم إلى حوالي 27 في عام 1959. ضبط موسميا إذا كان لديك سلسلة زمنية الموسمية التي يمكن وصفها باستخدام وهو نموذج إضافي، يمكنك ضبط موسميا من خلال تقدير العنصر الموسمية، وطرح المكون الموسمي المقدر من السلسلة الزمنية الأصلية. يمكننا القيام بذلك باستخدام تقدير العنصر الموسمية محسوبة الدالة 8220decompose () 8221. على سبيل المثال، لضبط موسميا من عدد المواليد شهريا في مدينة نيويورك، يمكننا تقدير العنصر الموسمية باستخدام 8220decompose () 8221، ومن ثم طرح المكون الموسمية من سلسلة الوقت الأصلي: يمكننا بعد ذلك رسم سلسلة زمنية معدلة موسميا باستخدام الدالة 8220plot () 8221، وذلك بكتابة: يمكنك أن ترى أن الاختلاف الموسمي قد تمت إزالته من السلسلة الزمنية المعدلة موسميا. سلسلة الوقت المعدلة موسميا الآن يحتوي فقط على عنصر الاتجاه والمكون غير النظامية. ويمكن استخدام التنبؤات باستخدام التمهيد الأسي التمهيد الأسي لجعل التنبؤات قصيرة الأجل للبيانات سلسلة زمنية. تمهيد الأسي بسيط إذا كان لديك سلسلة زمنية يمكن وصفها باستخدام نموذج المضافة مع مستوى ثابت وليس موسمية، يمكنك استخدام تمهيد الأسي بسيط لجعل التوقعات على المدى القصير. توفر طريقة التجانس الأسي البسيط طريقة لتقدير المستوى عند النقطة الزمنية الحالية. يتم التحكم بالتلميع بواسطة ألفا المعلمة لتقدير المستوى عند نقطة الزمن الحالية. قيمة ألفا تكمن بين 0 و 1. القيم ألفا التي هي قريبة من 0 يعني أنه يتم وضع القليل من الوزن على الملاحظات الأخيرة عند وضع توقعات القيم المستقبلية. على سبيل المثال، يحتوي ملف robjhyndmantsdldatahurstprecip1.dat على مجموع الأمطار السنوية في البوصة إلى لندن، من 1813-1912 (البيانات الأصلية من هيبل وماكلويد، 1994). يمكننا قراءة البيانات إلى R ورسمها من خلال كتابة: يمكنك أن ترى من المؤامرة أن هناك مستوى ثابت تقريبا (متوسط ​​يبقى ثابت في حوالي 25 بوصة). ويبدو أن التقلبات العشوائية في السلاسل الزمنية ثابتة تقريبا في الحجم مع مرور الوقت، ولذلك فمن المناسب وصف البيانات باستخدام نموذج مضاف. وهكذا، يمكننا أن نجعل التنبؤات باستخدام التمهيد الأسي بسيط. لجعل التنبؤات باستخدام التمهيد الأسي بسيط في R، يمكننا أن تناسب نموذج التنميق الأسي بسيط الأسي باستخدام 8220HoltWinters () 8221 الدالة في R. لاستخدام هولتوينترز () لتمهيد الأسي بسيط، نحن بحاجة إلى تعيين المعلمات بيتافالس و غامافالس في دالة هولتوينترز () تستخدم معلمات بيتا و غاما من أجل التمدد الأسي هولت 8217s، أو التمدد الأسي هولت-وينتر، كما هو موضح أدناه). ترجع الدالة هولتوينترس () متغير قائمة يحتوي على العديد من العناصر المسماة. على سبيل المثال، لاستخدام تمهيد الأسي بسيط لجعل التنبؤات لسلسلة زمنية من هطول الأمطار السنوي في لندن، ونحن نكتب: إخراج هولتوينترز () يخبرنا أن القيمة المقدرة للمعلمة ألفا حوالي 0.024. وهذا قريب جدا من الصفر، يخبرنا أن التنبؤات تستند إلى ملاحظات حديثة وأقل حداثة (على الرغم من أنه قد تم وضع وزن أكبر نسبيا على الملاحظات الأخيرة). افتراضيا، هولتوينترس () يجعل مجرد توقعات لنفس الفترة الزمنية التي تغطيها لدينا سلسلة زمنية الأصلي. في هذه الحالة، شملت سلسلة زمنية لدينا الأصلية هطول الأمطار في لندن من 1813-1912، وبالتالي فإن التوقعات هي أيضا 1813-1912. في المثال أعلاه، قمنا بتخزين إخراج الدالة هولتوينترس () في متغير القائمة 8220rainseriesforecasts8221. يتم تخزين التنبؤات التي قام بها هولتوينترز () في عنصر اسمه من هذا المتغير قائمة تسمى 8220fitted8221، حتى نتمكن من الحصول على قيمهم عن طريق كتابة: يمكننا رسم سلسلة زمنية الأصلي ضد التوقعات عن طريق كتابة: المؤامرة يظهر سلسلة الوقت الأصلي في الأسود، والتنبؤات كخط أحمر. السلاسل الزمنية للتنبؤات أكثر سلاسة من السلاسل الزمنية للبيانات الأصلية هنا. وكمقياس لدقة التنبؤات، يمكننا حساب مجموع الأخطاء المربعة لأخطاء التنبؤ داخل العينة، أي أخطاء التنبؤ للفترة الزمنية التي تغطيها السلاسل الزمنية الأصلية. يتم تخزين مجموع-مربع-الأخطاء في عنصر اسمه من المتغير قائمة 8220rainseriesforecasts8221 يسمى 8220SSE8221، حتى نتمكن من الحصول على قيمته عن طريق كتابة: وهذا هو، هنا مجموع من مربع-الأخطاء هو 1828.855. ومن الشائع في التمهيد الأسي بسيط لاستخدام القيمة الأولى في السلاسل الزمنية كقيمة أولية للمستوى. على سبيل المثال، في السلسلة الزمنية لسقوط الأمطار في لندن، القيمة الأولى هي 23.56 (بوصة) للمطر في 1813. يمكنك تحديد القيمة الأولية للمستوى في الدالة هولتوينترس () باستخدام المعلمة 8220l. start8221. على سبيل المثال، لجعل التوقعات مع القيمة الأولية للمستوى المحدد إلى 23.56، نكتب: كما هو موضح أعلاه، افتراضيا هولتوينترس () يجعل فقط التوقعات للفترة الزمنية التي تغطيها البيانات الأصلية، وهو 1813-1912 لهطول الأمطار السلاسل الزمنية. يمكننا أن نجعل التنبؤات لمزيد من النقاط الزمنية باستخدام 8220forecast. HoltWinters () 8221 وظيفة في حزمة R 8220forecast8221. لاستخدام وظيفة. HoltWinters ()، نحتاج أولا إلى تثبيت حزمة 8220forecast8221 R (للحصول على إرشادات حول كيفية تثبيت حزمة R، راجع كيفية تثبيت حزمة R). بمجرد تثبيت حزمة 8220forecast8221 R، يمكنك تحميل حزمة 8220forecast8221 R عن طريق كتابة: عند استخدام الدالة Forecast. HoltWinters ()، كوسيطتها الأولى (إدخال)، يمكنك تمرير النموذج التنبؤي الذي قمت بتجهيزه بالفعل باستخدام هولتوينترس () وظيفة. على سبيل المثال، في حالة السلاسل الزمنية لهطول الأمطار، قمنا بتخزين النموذج التنبئي الذي تم باستخدام هولتوينترز () في المتغير 8220rainseriesforecasts8221. يمكنك تحديد عدد نقاط الوقت الإضافية التي تريد جعل التنبؤات باستخدام المعلمة 8220h8221 في التنبؤ. هولتوينترز (). على سبيل المثال، لجعل توقعات هطول الأمطار لسنوات 1814-1820 (8 سنوات أخرى) باستخدام التنبؤ. هولتوينترس ()، ونحن نكتب: وظيفة التنبؤ. هولتوينترس () يعطيك توقعات لمدة عام، فاصل التنبؤ 80 ل والتنبؤ، وفترة التنبؤ 95 للتنبؤ. على سبيل المثال، فإن هطول الأمطار المتوقع لعام 1920 حوالي 24.68 بوصة، مع فاصل التنبؤ 95 من (16.24، 33.11). لتخطيط التنبؤات التي أدلى بها التنبؤ. هولتوينترز ()، يمكننا استخدام 8220plot. forecast () 8221 وظيفة: هنا التوقعات ل 1913-1920 يتم رسمها كخط أزرق، فاصل التنبؤ 80 كمنطقة مظللة البرتقالي، و 95 فترة التنبؤ كمنطقة مظللة صفراء. وتحسب الأخطاء 8216forecast8217 القيم الملحوظة ناقص القيم المتوقعة، لكل نقطة زمنية. يمكننا فقط حساب أخطاء التنبؤ للفترة الزمنية التي تغطيها سلسلة زمنية لدينا الأصلية، وهو 1813-1912 للبيانات هطول الأمطار. وكما ذكر أعلاه، فإن مقياسا واحدا من دقة النموذج التنبؤية هو أخطاء مجموع المربعات (سس) في أخطاء التنبؤ داخل العينة. يتم تخزين أخطاء التنبؤ داخل العينة في العنصر المسمى 8220residuals8221 من متغير القائمة التي يتم إرجاعها بواسطة التنبؤ. هولتوينترس (). وإذا تعذر تحسين النموذج التنبئي، ينبغي ألا تكون هناك ترابط بين أخطاء التنبؤ بالتنبؤات المتعاقبة. وبعبارة أخرى، إذا كانت هناك ارتباطات بين أخطاء التنبؤ بالتنبؤات المتعاقبة، فمن المحتمل أن يكون من الممكن تحسين التنبؤات الأسية البسيطة للتمهيد بواسطة تقنية التنبؤ الأخرى. لمعرفة ما إذا كان هذا هو الحال، يمكننا الحصول على الرسم البياني لأخطاء التنبؤ داخل العينة للتخلف 1-20. يمكننا حساب الرسم البياني لأخطاء التنبؤ باستخدام الدالة 8220acf () 8221 في R. لتحديد الفارق الزمني الأقصى الذي نريد أن ننظر إليه، نستخدم المعلمة 8220lag. max8221 في أكف (). على سبيل المثال، لحساب الرسم البياني لأخطاء التنبؤ في العينة لبيانات هطول الأمطار في لندن للتخلف 1-20، نكتب: يمكنك أن ترى من عينة الرسم البياني أن الارتباط الذاتي في تأخر 3 هو مجرد لمس حدود الأهمية. لاختبار ما إذا كان هناك دليل كبير على ارتباطات غير صفرية في الفترات الزمنية 1-20، يمكننا إجراء اختبار لجونغ بوكس. ويمكن القيام بذلك في R باستخدام 8220Box. test () 8221، وظيفة. يتم تحديد الفارق الزمني الأقصى الذي نريد أن ننظر إليه باستخدام المعلمة 8220lag8221 في الدالة Box. test (). على سبيل المثال، لاختبار ما إذا كانت هناك أوتوكوريلاتيونس غير صفرية في الفترات الزمنية 1-20، لأخطاء التنبؤ داخل العينة لبيانات هطول الأمطار في لندن، ونحن نكتب: هنا إحصائية اختبار لجونغ بوكس ​​هو 17.4، وقيمة P هو 0.6 ، ولذلك لا يوجد دليل يذكر على وجود ارتباطات ذاتية غير صفرية في أخطاء التنبؤ داخل العينة عند الفترات الزمنية 1-20. وللتأكد من أن النموذج التنبؤي لا يمكن تحسينه، فمن الجيد أيضا التحقق مما إذا كانت أخطاء التنبؤ موزعة عادة مع متوسط ​​الصفر والتباين المستمر. ولتحقق ما إذا كان لأخطاء التنبؤ تباين ثابت، يمكننا أن نجعل مؤامرة زمنية لأخطاء التنبؤ في العينة: توضح المؤامرة أن أخطاء التنبؤ داخل العينة يبدو أنها تباين ثابت تقريبا مع مرور الوقت، على الرغم من أن حجم التقلبات في قد يكون بداية السلاسل الزمنية (1820-1830) أقل قليلا من ذلك في التواريخ اللاحقة (على سبيل المثال 1840-1850). ولتحقق ما إذا كانت أخطاء التنبؤ موزعة عادة بمتوسط ​​صفر، يمكننا رسم رسم بياني لأخطاء التنبؤ، مع منحنى عادي مضاف له صفر ونفس الانحراف المعياري مثل توزيع أخطاء التنبؤ. للقيام بذلك، يمكننا تحديد وظيفة R 8220plotForecastErrors () 8221، أدناه: سيكون لديك لنسخ وظيفة أعلاه إلى R من أجل استخدامه. يمكنك بعد ذلك استخدام بلوتفوريكاسترورس () لرسم رسم بياني (مع منحنى عادي مضاف إليه) لأخطاء التنبؤ بتنبؤات هطول الأمطار: توضح المؤامرة أن توزيع أخطاء التنبؤ يتمركز تقريبا على الصفر، ويتم توزيعها بشكل طبيعي أو أكثر، على الرغم من يبدو أن يكون منحرف قليلا إلى اليمين بالمقارنة مع منحنى العادي. ومع ذلك، فإن الانحراف الصحيح صغير نسبيا، ولذا فمن المعقول أن أخطاء التنبؤ توزع عادة مع متوسط ​​صفر. وأظهر اختبار لجونغ بوكس ​​أن هناك القليل من الأدلة على وجود ارتباطات ذاتية غير صفرية في أخطاء التنبؤ داخل العينة، ويبدو أن توزيع أخطاء التنبؤ موزعة عادة بمعدل صفر. وهذا يشير إلى أن طريقة التمهيد الأسي البسيط توفر نموذجا تنبؤيا كافيا لهطول الأمطار في لندن، وهو ما قد لا يمكن تحسينه. وعلاوة على ذلك، فإن الافتراضات التي تستند إلى الفواصل الزمنية للتنبؤات 80 و 95 تستند إلى (عدم وجود علاقة ذاتية في أخطاء التنبؤات، وعادة ما توزع أخطاء التنبؤ مع متوسط ​​الصفر والتباين الثابت) على الأرجح. Holt8217s التماسك الأسي إذا كان لديك سلسلة زمنية يمكن وصفها باستخدام نموذج إضافي مع الاتجاه المتزايد أو المتناقص وليس موسمية، يمكنك استخدام تمهيد هولت 8217s الأسي لجعل التوقعات على المدى القصير. ويقدر Holt8217s التمهيد الأسي مستوى والانحدار في نقطة الوقت الحالي. يتم التحكم بالتلميع بواسطة معلمتين، ألفا، لتقدير المستوى عند النقطة الزمنية الحالية، وبيتا لتقدير المنحدر b لعنصر الاتجاه في النقطة الزمنية الحالية. كما هو الحال مع التجانس الأسي البسيط، فإن قيمتي ألفا و بيتا لها قيم بين 0 و 1، والقيم التي تقترب من 0 تعني أن هناك وزن قليل يوضع على الملاحظات الأخيرة عند وضع توقعات القيم المستقبلية. مثال على السلاسل الزمنية التي يمكن وصفها على الأرجح باستخدام نموذج مضافة مع اتجاه ولا موسمية هي سلسلة زمنية من قطرها السنوي من التنانير النسائية 8217s في تنحنح، من 1866 إلى 1911. تتوفر البيانات في ملف روجيندمانتسدلداتاروبيرتسكيرتس. دات (البيانات الأصلية من هيبل وماكلويد، 1994). يمكننا أن نقرأ في ورسم البيانات في R عن طريق كتابة: يمكننا أن نرى من المؤامرة التي كانت هناك زيادة في قطر تنحنح من حوالي 600 في عام 1866 إلى حوالي 1050 في عام 1880، وبعد ذلك انخفض قطر تنحنح إلى حوالي 520 في عام 1911.لإجراء التنبؤات، يمكننا أن نلائم نموذج تنبؤي باستخدام الدالة هولتوينترس () في R. لاستخدام هولتوينترز () ل هولتوينترز الأسي، يجب أن نضع المعلمة غامافالس (يتم استخدام المعلمة غاما ل هولت-وينترس الأسي التمهيد، كما هو موضح أدناه). على سبيل المثال، لاستخدام هولت 8217s التمهيد الأسي لتناسب نموذج تنبئي للتنورة تنحنح القطر، ونحن نكتب: القيمة المقدرة ألفا هو 0.84، وبيتا هو 1.00. وكلاهما مرتفع، ويخبرنا أن تقدير القيمة الحالية للمستوى، والمنحدر (ب) لعنصر الاتجاه، يستندان في معظمه إلى ملاحظات حديثة جدا في السلاسل الزمنية. وهذا يجعل الشعور بديهية جيدة، منذ مستوى ومنحدر السلاسل الزمنية على حد سواء تغيير الكثير جدا مع مرور الوقت. قيمة أخطاء مجموع المربعات لأخطاء التنبؤ في العينة هي 16954. يمكننا رسم السلسلة الزمنية الأصلية كخط أسود، مع القيم المتوقعة كخط أحمر فوق ذلك، من خلال كتابة: نحن يمكن أن نرى من الصورة أن التنبؤات داخل العينة تتفق بشكل جيد مع القيم الملحوظة، على الرغم من أنها تميل إلى التخلف عن القيم الملحوظة قليلا. إذا كنت ترغب في ذلك، يمكنك تحديد القيم الأولية للمستوى والمنحدر b من مكون الاتجاه باستخدام الدالات 8220l. start8221 و 8220b. start8221 للدالة هولتوينترس (). ومن الشائع تحديد القيمة الأولية للمستوى إلى القيمة الأولى في السلسلة الزمنية (608 لبيانات التنانير)، والقيمة الأولية للمنحدر إلى القيمة الثانية مطروحا منها القيمة الأولى (9 بالنسبة إلى بيانات التنانير). على سبيل المثال، لتتناسب مع نموذج تنبؤي لبيانات تنحنح تنورة باستخدام التجانس الأسي هولت 8217s، مع القيم الأولية من 608 للمستوى و 9 للمنحدر ب من عنصر الاتجاه، ونحن نكتب: أما بالنسبة للتمهيد الأسي بسيط، يمكننا أن نجعل التنبؤات لأوقات مستقبلية لا تغطيها السلسلة الزمنية الأصلية باستخدام وظيفة التنبؤ. هولتوينترس () في حزمة 8220forecast8221. على سبيل المثال، كانت بيانات السلاسل الزمنية للتنورة هي 1866 إلى 1911، لذلك يمكننا أن نجعل التنبؤات لعام 1912 إلى 1930 (19 نقطة بيانات إضافية)، ورسمها، عن طريق كتابة: تظهر التوقعات كخط أزرق، مع 80 فترات كمنطقة برتقالية مظللة، وفترات التنبؤ 95 كمنطقة مظللة صفراء. أما بالنسبة للتجانس الأسي البسيط فيمكننا التحقق مما إذا كان من الممكن تحسين النموذج التنبئي عن طريق التحقق مما إذا كانت أخطاء التنبؤ داخل العينة تظهر ارتباطات ذاتية غير صفرية عند الفترات الزمنية 1-20. على سبيل المثال، للحصول على بيانات تنحنح تنورة، يمكننا أن نجعل الرسم البياني، وإجراء اختبار يجونغ بوكس، عن طريق كتابة: هنا يظهر الرسم البياني أن الارتباط الذاتي عينة لأخطاء التنبؤ في العينة في تأخر 5 يتجاوز حدود الدلالة. ومع ذلك، فإننا نتوقع واحد في 20 من أوتوكوريلاتيونس لأول عشرين الفترات تتجاوز حدود الأهمية 95 عن طريق الصدفة وحدها. في الواقع، عندما نقوم بإجراء اختبار يجونغ بوكس، قيمة p هي 0.47، مما يدل على أن هناك القليل من الأدلة على عدم الصفر أوتوكوريلاتيونس في أخطاء التنبؤ داخل العينة في الفترات الزمنية 1-20. أما بالنسبة للتجانس الأسي البسيط، فينبغي أن نتحقق أيضا من أن أخطاء التنبؤ لها تباين ثابت مع مرور الوقت، وتوزع عادة بمتوسط ​​صفر. ويمكننا أن نفعل ذلك من خلال وضع مخطط زمني لأخطاء التنبؤات، ورسم بياني لتوزيع أخطاء التنبؤ مع منحنى عادي مضاف إليه: توضح المؤامرة الزمنية لأخطاء التنبؤ أن أخطاء التنبؤ لها تباين ثابت تقريبا مع مرور الوقت. ويبين الرسم البياني لأخطاء التنبؤ أنه من المعقول أن تكون أخطاء التنبؤ موزعة عادة بمتوسط ​​صفر وتغير ثابت. وهكذا، يظهر اختبار لجونغ بوكس ​​أن هناك القليل من الأدلة على الارتباطات التلقائية في أخطاء التنبؤ، في حين أن مؤامرة الوقت والمخطط البياني لأخطاء التنبؤ تبين أنه من المعقول أن يتم توزيع أخطاء التنبؤ عادة مع متوسط ​​الصفر والتباين المستمر. لذلك، يمكننا أن نستنتج أن هولت 8217s الأسي التمهيد يوفر نموذج تنبؤي كاف للتنورة تنحنح أقطار، والتي ربما لا يمكن تحسينها على. وبالإضافة إلى ذلك، فإن ذلك يعني أن الافتراضات التي تستند إلى الفترات الزمنية للتنبؤات 80 و 95 قد تكون صحيحة. هولت-وينترس الأسي التنعيم إذا كان لديك سلسلة زمنية يمكن وصفها باستخدام نموذج المضافة مع زيادة أو انخفاض الاتجاه والموسمية، يمكنك استخدام هولت الشتاء الشتاء الأسي لجعل التنبؤات على المدى القصير. هولت-وينترس الأسي التمهيد يقدر المستوى، المنحدر والمكون الموسمية في الوقت الحالي نقطة. يتم التحكم بالتلميع بثلاث معلمات: ألفا، بيتا، و غاما، لتقديرات المستوى، المنحدر b لعنصر الاتجاه، والمكون الموسمي، على التوالي، عند النقطة الزمنية الحالية. وتتراوح قيم المعلمات ألفا وبيتا و غاما بين 0 و 1، والقيم القريبة من 0 تعني أن الوزن القليل نسبيا يوضع على الملاحظات الأخيرة عند وضع توقعات للقيم المستقبلية. ومن الأمثلة على السلاسل الزمنية التي يمكن وصفها على الأرجح باستخدام نموذج مضاف مع الاتجاه والموسمية هو التسلسل الزمني لسجل المبيعات الشهرية لمتجر الهدايا التذكارية في مدينة منتجع على الشاطئ في كوينزلاند بأستراليا (تمت مناقشته أعلاه): التنبؤات، ونحن يمكن أن يصلح نموذج التنبؤي باستخدام وظيفة هولتوينترس (). على سبيل المثال، لتناسب نموذج تنبؤي لسجل المبيعات الشهرية في متجر الهدايا التذكارية، نكتب: القيم المقدرة ألفا وبيتا وغاما هي 0.41، 0.00، و 0.96 على التوالي. قيمة ألفا (0.41) منخفضة نسبيا، مما يشير إلى أن تقدير المستوى في الوقت الحالي يستند إلى الملاحظات الأخيرة وبعض الملاحظات في الماضي البعيد. وتبلغ قيمة بيتا 0.00، مما يشير إلى أن تقدير المنحدر b لمكون الاتجاه لا يتم تحديثه على مدى السلاسل الزمنية، وبدلا من ذلك يتم تعيينه مساويا لقيمته الأولية. وهذا يجعل الشعور بديهية جيدة، كما يتغير مستوى قليلا على مدى سلسلة زمنية، ولكن المنحدر ب من عنصر الاتجاه لا يزال تقريبا نفس. وعلى النقيض من ذلك، فإن قيمة غاما (0.96) مرتفعة، مما يشير إلى أن تقدير العنصر الموسمية في النقطة الزمنية الحالية يستند فقط إلى ملاحظات حديثة جدا. أما بالنسبة للتمهيد الأسي بسيط و هولت 8217s التمهيد الأسي، يمكننا رسم سلسلة الوقت الأصلي كخط أسود، مع القيم المتوقعة كخط أحمر على رأس ذلك: ونحن نرى من مؤامرة أن الأساليب هولت الشتاء الأسية ناجحة جدا في التنبؤ بالقمم الموسمية، والتي تحدث تقريبا في نوفمبر من كل عام. لجعل التنبؤات في الأوقات المستقبلية غير المدرجة في السلسلة الزمنية الأصلية، نستخدم 8220forecast. HoltWinters () 8221 الدالة في 8220forecast8221 الحزمة. على سبيل المثال، البيانات الأصلية لمبيعات الهدايا التذكارية هي من كانون الثاني / يناير 1987 إلى كانون الأول / ديسمبر 1993. وإذا أردنا أن نجعل التوقعات للفترة من كانون الثاني / يناير 1994 إلى كانون الأول / ديسمبر 1998 (48 شهرا أخرى)، ورسم التوقعات، سنكتب: خط أزرق، والمناطق البرتقالية والأصفر المظللة تظهر 80 و 95 فترات التنبؤ، على التوالي. We can investigate whether the predictive model can be improved upon by checking whether the in-sample forecast errors show non-zero autocorrelations at lags 1-20, by making a correlogram and carrying out the Ljung-Box test: The correlogram shows that the autocorrelations for the in-sample forecast errors do not exceed the significance bounds for lags 1-20. Furthermore, the p-value for Ljung-Box test is 0.6, indicating that there is little evidence of non-zero autocorrelations at lags 1-20. We can check whether the forecast errors have constant variance over time, and are normally distributed with mean zero, by making a time plot of the forecast errors and a histogram (with overlaid normal curve): From the time plot, it appears plausible that the forecast errors have constant variance over time. From the histogram of forecast errors, it seems plausible that the forecast errors are normally distributed with mean zero. Thus, there is little evidence of autocorrelation at lags 1-20 for the forecast errors, and the forecast errors appear to be normally distributed with mean zero and constant variance over time. This suggests that Holt-Winters exponential smoothing provides an adequate predictive model of the log of sales at the souvenir shop, which probably cannot be improved upon. Furthermore, the assumptions upon which the prediction intervals were based are probably valid. ARIMA Models Exponential smoothing methods are useful for making forecasts, and make no assumptions about the correlations between successive values of the time series. However, if you want to make prediction intervals for forecasts made using exponential smoothing methods, the prediction intervals require that the forecast errors are uncorrelated and are normally distributed with mean zero and constant variance. While exponential smoothing methods do not make any assumptions about correlations between successive values of the time series, in some cases you can make a better predictive model by taking correlations in the data into account. Autoregressive Integrated Moving Average (ARIMA) models include an explicit statistical model for the irregular component of a time series, that allows for non-zero autocorrelations in the irregular component. Differencing a Time Series ARIMA models are defined for stationary time series. Therefore, if you start off with a non-stationary time series, you will first need to 8216difference8217 the time series until you obtain a stationary time series. If you have to difference the time series d times to obtain a stationary series, then you have an ARIMA(p, d,q) model, where d is the order of differencing used. You can difference a time series using the 8220diff()8221 function in R. For example, the time series of the annual diameter of women8217s skirts at the hem, from 1866 to 1911 is not stationary in mean, as the level changes a lot over time: We can difference the time series (which we stored in 8220skirtsseries8221, see above) once, and plot the differenced series, by typing: The resulting time series of first differences (above) does not appear to be stationary in mean. Therefore, we can difference the time series twice, to see if that gives us a stationary time series: Formal tests for stationarity Formal tests for stationarity called 8220unit root tests8221 are available in the fUnitRoots package, available on CRAN, but will not be discussed here. The time series of second differences (above) does appear to be stationary in mean and variance, as the level of the series stays roughly constant over time, and the variance of the series appears roughly constant over time. Thus, it appears that we need to difference the time series of the diameter of skirts twice in order to achieve a stationary series. If you need to difference your original time series data d times in order to obtain a stationary time series, this means that you can use an ARIMA(p, d,q) model for your time series, where d is the order of differencing used. For example, for the time series of the diameter of women8217s skirts, we had to difference the time series twice, and so the order of differencing (d) is 2. This means that you can use an ARIMA(p,2,q) model for your time series. The next step is to figure out the values of p and q for the ARIMA model. Another example is the time series of the age of death of the successive kings of England (see above): From the time plot (above), we can see that the time series is not stationary in mean. To calculate the time series of first differences, and plot it, we type: The time series of first differences appears to be stationary in mean and variance, and so an ARIMA(p,1,q) model is probably appropriate for the time series of the age of death of the kings of England. By taking the time series of first differences, we have removed the trend component of the time series of the ages at death of the kings, and are left with an irregular component. We can now examine whether there are correlations between successive terms of this irregular component if so, this could help us to make a predictive model for the ages at death of the kings. Selecting a Candidate ARIMA Model If your time series is stationary, or if you have transformed it to a stationary time series by differencing d times, the next step is to select the appropriate ARIMA model, which means finding the values of most appropriate values of p and q for an ARIMA(p, d,q) model. To do this, you usually need to examine the correlogram and partial correlogram of the stationary time series. To plot a correlogram and partial correlogram, we can use the 8220acf()8221 and 8220pacf()8221 functions in R, respectively. To get the actual values of the autocorrelations and partial autocorrelations, we set 8220plotFALSE8221 in the 8220acf()8221 and 8220pacf()8221 functions. Example of the Ages at Death of the Kings of England For example, to plot the correlogram for lags 1-20 of the once differenced time series of the ages at death of the kings of England, and to get the values of the autocorrelations, we type: We see from the correlogram that the autocorrelation at lag 1 (-0.360) exceeds the significance bounds, but all other autocorrelations between lags 1-20 do not exceed the significance bounds. To plot the partial correlogram for lags 1-20 for the once differenced time series of the ages at death of the English kings, and get the values of the partial autocorrelations, we use the 8220pacf()8221 function, by typing: The partial correlogram shows that the partial autocorrelations at lags 1, 2 and 3 exceed the significance bounds, are negative, and are slowly decreasing in magnitude with increasing lag (lag 1: -0.360, lag 2: -0.335, lag 3:-0.321). The partial autocorrelations tail off to zero after lag 3. Since the correlogram is zero after lag 1, and the partial correlogram tails off to zero after lag 3, this means that the following ARMA (autoregressive moving average) models are possible for the time series of first differences: an ARMA(3,0) model, that is, an autoregressive model of order p3, since the partial autocorrelogram is zero after lag 3, and the autocorrelogram tails off to zero (although perhaps too abruptly for this model to be appropriate) an ARMA(0,1) model, that is, a moving average model of order q1, since the autocorrelogram is zero after lag 1 and the partial autocorrelogram tails off to zero an ARMA(p, q) model, that is, a mixed model with p and q greater than 0, since the autocorrelogram and partial correlogram tail off to zero (although the correlogram probably tails off to zero too abruptly for this model to be appropriate) We use the principle of parsimony to decide which model is best: that is, we assum e that the model with the fewest parameters is best. The ARMA(3,0) model has 3 parameters, the ARMA(0,1) model has 1 parameter, and the ARMA(p, q) model has at least 2 parameters. Therefore, the ARMA(0,1) model is taken as the best model. An ARMA(0,1) model is a moving average model of order 1, or MA(1) model. This model can be written as: Xt - mu Zt - (theta Zt-1), where Xt is the stationary time series we are studying (the first differenced series of ages at death of English kings), mu is the mean of time series Xt, Zt is white noise with mean zero and constant variance, and theta is a parameter that can be estimated. A MA (moving average) model is usually used to model a time series that shows short-term dependencies between successive observations. Intuitively, it makes good sense that a MA model can be used to describe the irregular component in the time series of ages at death of English kings, as we might expect the age at death of a particular English king to have some effect on the ages at death of the next king or two, but not much effect on the ages at death of kings that reign much longer after that. Shortcut: the auto. arima() function The auto. arima() function can be used to find the appropriate ARIMA model, eg. type 8220library(forecast)8221, then 8220auto. arima(kings)8221. The output says an appropriate model is ARIMA(0,1,1). Since an ARMA(0,1) model (with p0, q1) is taken to be the best candidate model for the time series of first differences of the ages at death of English kings, then the original time series of the ages of death can be modelled using an ARIMA(0,1,1) model (with p0, d1, q1, where d is the order of differencing required). Example of the Volcanic Dust Veil in the Northern Hemisphere Let8217s take another example of selecting an appropriate ARIMA model. The file file robjhyndmantsdldataannualdvi. dat contains data on the volcanic dust veil index in the northern hemisphere, from 1500-1969 (original data from Hipel and Mcleod, 1994). This is a measure of the impact of volcanic eruptions8217 release of dust and aerosols into the environment. We can read it into R and make a time plot by typing: From the time plot, it appears that the random fluctuations in the time series are roughly constant in size over time, so an additive model is probably appropriate for describing this time series. Furthermore, the time series appears to be stationary in mean and variance, as its level and variance appear to be roughly constant over time. Therefore, we do not need to difference this series in order to fit an ARIMA model, but can fit an ARIMA model to the original series (the order of differencing required, d, is zero here). We can now plot a correlogram and partial correlogram for lags 1-20 to investigate what ARIMA model to use: We see from the correlogram that the autocorrelations for lags 1, 2 and 3 exceed the significance bounds, and that the autocorrelations tail off to zero after lag 3. The autocorrelations for lags 1, 2, 3 are positive, and decrease in magnitude with increasing lag (lag 1: 0.666, lag 2: 0.374, lag 3: 0.162). The autocorrelation for lags 19 and 20 exceed the significance bounds too, but it is likely that this is due to chance, since they just exceed the significance bounds (especially for lag 19), the autocorrelations for lags 4-18 do not exceed the signifiance bounds, and we would expect 1 in 20 lags to exceed the 95 significance bounds by chance alone. From the partial autocorrelogram, we see that the partial autocorrelation at lag 1 is positive and exceeds the significance bounds (0.666), while the partial autocorrelation at lag 2 is negative and also exceeds the significance bounds (-0.126). The partial autocorrelations tail off to zero after lag 2. Since the correlogram tails off to zero after lag 3, and the partial correlogram is zero after lag 2, the following ARMA models are possible for the time series: an ARMA(2,0) model, since the partial autocorrelogram is zero after lag 2, and the correlogram tails off to zero after lag 3, and the partial correlogram is zero after lag 2 an ARMA(0,3) model, since the autocorrelogram is zero after lag 3, and the partial correlogram tails off to zero (although perhaps too abruptly for this model to be appropriate) an ARMA(p, q) mixed model, since the correlogram and partial correlogram tail off to zero (although the partial correlogram perhaps tails off too abruptly for this model to be appropriate) Shortcut: the auto. arima() function Again, we can use auto. arima() to find an appropriate model, by typing 8220auto. arima(volcanodust)8221, which gives us ARIMA(1,0,2), which has 3 parameters. However, different criteria can be used to select a model (see auto. arima() help page). If we use the 8220bic8221 criterion, which penalises the number of parameters, we get ARIMA(2,0,0), which is ARMA(2,0): 8220auto. arima(volcanodust, ic8221bic8221)8221. The ARMA(2,0) model has 2 parameters, the ARMA(0,3) model has 3 parameters, and the ARMA(p, q) model has at least 2 parameters. Therefore, using the principle of parsimony, the ARMA(2,0) model and ARMA(p, q) model are equally good candidate models. An ARMA(2,0) model is an autoregressive model of order 2, or AR(2) model. This model can be written as: Xt - mu (Beta1 (Xt-1 - mu)) (Beta2 (Xt-2 - mu)) Zt, where Xt is the stationary time series we are studying (the time series of volcanic dust veil index), mu is the mean of time series Xt, Beta1 and Beta2 are parameters to be estimated, and Zt is white noise with mean zero and constant variance. An AR (autoregressive) model is usually used to model a time series which shows longer term dependencies between successive observations. Intuitively, it makes sense that an AR model could be used to describe the time series of volcanic dust veil index, as we would expect volcanic dust and aerosol levels in one year to affect those in much later years, since the dust and aerosols are unlikely to disappear quickly. If an ARMA(2,0) model (with p2, q0) is used to model the time series of volcanic dust veil index, it would mean that an ARIMA(2,0,0) model can be used (with p2, d0, q0, where d is the order of differencing required). Similarly, if an ARMA(p, q) mixed model is used, where p and q are both greater than zero, than an ARIMA(p,0,q) model can be used. Forecasting Using an ARIMA Model Once you have selected the best candidate ARIMA(p, d,q) model for your time series data, you can estimate the parameters of that ARIMA model, and use that as a predictive model for making forecasts for future values of your time series. You can estimate the parameters of an ARIMA(p, d,q) model using the 8220arima()8221 function in R. Example of the Ages at Death of the Kings of England For example, we discussed above that an ARIMA(0,1,1) model seems a plausible model for the ages at deaths of the kings of England. You can specify the values of p, d and q in the ARIMA model by using the 8220order8221 argument of the 8220arima()8221 function in R. To fit an ARIMA(p, d,q) model to this time series (which we stored in the variable 8220kingstimeseries8221, see above), we type: As mentioned above, if we are fitting an ARIMA(0,1,1) model to our time series, it means we are fitting an an ARMA(0,1) model to the time series of first differences. An ARMA(0,1) model can be written Xt - mu Zt - (theta Zt-1), where theta is a parameter to be estimated. From the output of the 8220arima()8221 R function (above), the estimated value of theta (given as 8216ma18217 in the R output) is -0.7218 in the case of the ARIMA(0,1,1) model fitted to the time series of ages at death of kings. Specifying the confidence level for prediction intervals You can specify the confidence level for prediction intervals in forecast. Arima() by using the 8220level8221 argument. For example, to get a 99.5 prediction interval, we would type 8220forecast. Arima(kingstimeseriesarima, h5, levelc(99.5))8221. We can then use the ARIMA model to make forecasts for future values of the time series, using the 8220forecast. Arima()8221 function in the 8220forecast8221 R package. For example, to forecast the ages at death of the next five English kings, we type: The original time series for the English kings includes the ages at death of 42 English kings. The forecast. Arima() function gives us a forecast of the age of death of the next five English kings (kings 43-47), as well as 80 and 95 prediction intervals for those predictions. The age of death of the 42nd English king was 56 years (the last observed value in our time series), and the ARIMA model gives the forecasted age at death of the next five kings as 67.8 years. We can plot the observed ages of death for the first 42 kings, as well as the ages that would be predicted for these 42 kings and for the next 5 kings using our ARIMA(0,1,1) model, by typing: As in the case of exponential smoothing models, it is a good idea to investigate whether the forecast errors of an ARIMA model are normally distributed with mean zero and constant variance, and whether the are correlations between successive forecast errors. For example, we can make a correlogram of the forecast errors for our ARIMA(0,1,1) model for the ages at death of kings, and perform the Ljung-Box test for lags 1-20, by typing: Since the correlogram shows that none of the sample autocorrelations for lags 1-20 exceed the significance bounds, and the p-value for the Ljung-Box test is 0.9, we can conclude that there is very little evidence for non-zero autocorrelations in the forecast errors at lags 1-20. To investigate whether the forecast errors are normally distributed with mean zero and constant variance, we can make a time plot and histogram (with overlaid normal curve) of the forecast errors: The time plot of the in-sample forecast errors shows that the variance of the forecast errors seems to be roughly constant over time (though perhaps there is slightly higher variance for the second half of the time series). The histogram of the time series shows that the forecast errors are roughly normally distributed and the mean seems to be close to zero. Therefore, it is plausible that the forecast errors are normally distributed with mean zero and constant variance. Since successive forecast errors do not seem to be correlated, and the forecast errors seem to be normally distributed with mean zero and constant variance, the ARIMA(0,1,1) does seem to provide an adequate predictive model for the ages at death of English kings. Example of the Volcanic Dust Veil in the Northern Hemisphere We discussed above that an appropriate ARIMA model for the time series of volcanic dust veil index may be an ARIMA(2,0,0) model. To fit an ARIMA(2,0,0) model to this time series, we can type: As mentioned above, an ARIMA(2,0,0) model can be written as: written as: Xt - mu (Beta1 (Xt-1 - mu)) (Beta2 (Xt-2 - mu)) Zt, where Beta1 and Beta2 are parameters to be estimated. The output of the arima() function tells us that Beta1 and Beta2 are estimated as 0.7533 and -0.1268 here (given as ar1 and ar2 in the output of arima()). Now we have fitted the ARIMA(2,0,0) model, we can use the 8220forecast. ARIMA()8221 model to predict future values of the volcanic dust veil index. The original data includes the years 1500-1969. To make predictions for the years 1970-2000 (31 more years), we type: We can plot the original time series, and the forecasted values, by typing: One worrying thing is that the model has predicted negative values for the volcanic dust veil index, but this variable can only have positive values The reason is that the arima() and forecast. Arima() functions don8217t know that the variable can only take positive values. Clearly, this is not a very desirable feature of our current predictive model. Again, we should investigate whether the forecast errors seem to be correlated, and whether they are normally distributed with mean zero and constant variance. To check for correlations between successive forecast errors, we can make a correlogram and use the Ljung-Box test: The correlogram shows that the sample autocorrelation at lag 20 exceeds the significance bounds. However, this is probably due to chance, since we would expect one out of 20 sample autocorrelations to exceed the 95 significance bounds. Furthermore, the p-value for the Ljung-Box test is 0.2, indicating that there is little evidence for non-zero autocorrelations in the forecast errors for lags 1-20. To check whether the forecast errors are normally distributed with mean zero and constant variance, we make a time plot of the forecast errors, and a histogram: The time plot of forecast errors shows that the forecast errors seem to have roughly constant variance over time. However, the time series of forecast errors seems to have a negative mean, rather than a zero mean. We can confirm this by calculating the mean forecast error, which turns out to be about -0.22: The histogram of forecast errors (above) shows that although the mean value of the forecast errors is negative, the distribution of forecast errors is skewed to the right compared to a normal curve. Therefore, it seems that we cannot comfortably conclude that the forecast errors are normally distributed with mean zero and constant variance Thus, it is likely that our ARIMA(2,0,0) model for the time series of volcanic dust veil index is not the best model that we could make, and could almost definitely be improved upon Links and Further Reading Here are some links for further reading. For a more in-depth introduction to R, a good online tutorial is available on the 8220Kickstarting R8221 website, cran. r-project. orgdoccontribLemon-kickstart . There is another nice (slightly more in-depth) tutorial to R available on the 8220Introduction to R8221 website, cran. r-project. orgdocmanualsR-intro. html . You can find a list of R packages for analysing time series data on the CRAN Time Series Task View webpage . To learn about time series analysis, I would highly recommend the book 8220Time series8221 (product code M24902) by the Open University, available from the Open University Shop . There are two books available in the 8220Use R8221 series on using R for time series analyses, the first is Introductory Time Series with R by Cowpertwait and Metcalfe, and the second is Analysis of Integrated and Cointegrated Time Series with R by Pfaff. Acknowledgements I am grateful to Professor Rob Hyndman. for kindly allowing me to use the time series data sets from his Time Series Data Library (TSDL) in the examples in this booklet. Many of the examples in this booklet are inspired by examples in the excellent Open University book, 8220Time series8221 (product code M24902), available from the Open University Shop . Thank you to Ravi Aranke for bringing auto. arima() to my attention, and Maurice Omane-Adjepong for bringing unit root tests to my attention, and Christian Seubert for noticing a small bug in plotForecastErrors(). Thank you for other comments to Antoine Binard and Bill Johnston. I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email address alc 64 sanger 46 ac 46 ukMoving average and exponential smoothing models As a first step in moving beyond mean models, random walk models, and linear trend models, nonseasonal patterns and trends can be extrapolated using a moving-average or smoothing model. الافتراض الأساسي وراء المتوسطات ونماذج التمهيد هو أن السلاسل الزمنية ثابتة محليا بمتوسط ​​متغير ببطء. وبالتالي، فإننا نأخذ متوسطا متحركا (محلي) لتقدير القيمة الحالية للمتوسط ​​ومن ثم استخدامه كمؤشر للمستقبل القريب. ويمكن اعتبار ذلك بمثابة حل توفيقي بين النموذج المتوسط ​​ونموذج المشي العشوائي بدون الانجراف. ويمكن استخدام نفس الاستراتيجية لتقدير الاتجاه المحلي واستقراءه. وعادة ما يطلق على المتوسط ​​المتحرك نسخة كوتسموثيدكوت من السلسلة الأصلية لأن المتوسط ​​على المدى القصير له تأثير على إزالة المطبات في السلسلة الأصلية. من خلال تعديل درجة التمهيد (عرض المتوسط ​​المتحرك)، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء المتوسط ​​و نماذج المشي العشوائي. أبسط نوع من نموذج المتوسط ​​هو. المتوسط ​​المتحرك البسيط (بالتساوي المرجح): تقدر قيمة قيمة Y في الوقت t1 التي يتم إجراؤها في الوقت t بالمتوسط ​​البسيط لآخر ملاحظات m: (هنا وفي مكان آخر سأستخدم الرمز 8220Y-hat8221 للوقوف للتنبؤ بالسلسلة الزمنية Y التي أجريت في أقرب موعد ممكن من قبل نموذج معين.) ويتركز هذا المتوسط ​​في الفترة t - (m1) 2، مما يعني أن تقدير المتوسط ​​المحلي سوف تميل إلى التخلف عن صحيح قيمة المتوسط ​​المحلي بنحو (m1) فترتين. وبالتالي، نقول أن متوسط ​​عمر البيانات في المتوسط ​​المتحرك البسيط هو (m1) 2 بالنسبة إلى الفترة التي يتم فيها احتساب التوقعات: هذا هو مقدار الوقت الذي تميل التنبؤات إلى التخلف عن نقاط التحول في البيانات . على سبيل المثال، إذا كنت تقوم بحساب متوسط ​​القيم الخمس الأخيرة، فإن التوقعات ستكون حوالي 3 فترات متأخرة في الاستجابة لنقاط التحول. ويلاحظ أنه في حالة M1، فإن نموذج المتوسط ​​المتحرك البسيط (سما) يساوي نموذج المشي العشوائي (بدون نمو). وإذا كانت m كبيرة جدا (مماثلة لطول فترة التقدير)، فإن نموذج سما يعادل النموذج المتوسط. وكما هو الحال مع أي معلمة لنموذج التنبؤ، من العرفي أن تعدل قيمة k من أجل الحصول على أفضل قيمة ممكنة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. وفيما يلي مثال لسلسلة يبدو أنها تظهر تقلبات عشوائية حول متوسط ​​متغير ببطء. أولا، يتيح محاولة لتناسب ذلك مع نموذج المشي العشوائي، وهو ما يعادل متوسط ​​متحرك بسيط من 1 مصطلح: نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في هذه السلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من كوتنويسكوت في البيانات (التقلبات العشوائية) وكذلك كوتسيغنالكوت (المتوسط ​​المحلي). إذا حاولنا بدلا من ذلك متوسط ​​متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات: المتوسط ​​المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة. متوسط ​​عمر البيانات في هذه التوقعات هو 3 ((51) 2)، بحيث تميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات. (على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التوقعات لا تتحول حتى عدة فترات في وقت لاحق). لاحظ أن التوقعات على المدى الطويل من نموذج سما هي خط مستقيم أفقي، تماما كما في المشي العشوائي نموذج. وبالتالي، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات. ومع ذلك، في حين أن التنبؤات من نموذج المشي العشوائي هي ببساطة مساوية للقيمة الملاحظة الأخيرة، والتنبؤات من نموذج سما يساوي المتوسط ​​المرجح للقيم الأخيرة. إن حدود الثقة المحسوبة من قبل ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط ​​المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ. ومن الواضح أن هذا غير صحيح لسوء الحظ، لا توجد نظرية إحصائية أساسية تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج. ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة للتنبؤات الأطول أجلا. على سبيل المثال، يمكنك إعداد جدول بيانات سيتم فيه استخدام نموذج سما للتنبؤ بخطوتين إلى الأمام، و 3 خطوات إلى الأمام، وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل أفق للتنبؤ، ومن ثم بناء فترات ثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط ​​متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر من تأثير متخلف: متوسط ​​العمر هو الآن 5 فترات ((91) 2). إذا أخذنا متوسط ​​متحرك لمدة 19 عاما، فإن متوسط ​​العمر يزيد إلى 10: لاحظ أن التوقعات تتخلف الآن عن نقاط التحول بنحو 10 فترات. أي كمية من التجانس هو الأفضل لهذه السلسلة هنا جدول يقارن إحصاءات الخطأ، بما في ذلك أيضا متوسط ​​3 المدى: نموذج C، المتوسط ​​المتحرك لمدة 5 سنوات، ينتج أقل قيمة رمز بهامش صغير على 3 المتوسطات و 9-المدى، وإحصاءاتهم الأخرى متطابقة تقريبا. لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل استجابة أكثر قليلا أو أكثر قليلا نعومة في التوقعات. (العودة إلى أعلى الصفحة.) براونز بسيط الأسي تمهيد (المتوسط ​​المتحرك المرجح أضعافا) نموذج المتوسط ​​المتحرك البسيط المذكورة أعلاه لديها الخاصية غير المرغوب فيها أنه يعامل الملاحظات k الماضية بالتساوي تماما ويتجاهل جميع الملاحظات السابقة. بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، يجب أن تحصل على الملاحظة الأخيرة أكثر قليلا من الوزن الثاني من أحدث، و 2 أحدث يجب الحصول على وزن أكثر قليلا من 3 أحدث، و هكذا. نموذج التمهيد الأسي بسيط (سيس) يحقق هذا. اسمحوا 945 تدل على كونتسموثينغ كونستانتكوت (عدد بين 0 و 1). طريقة واحدة لكتابة النموذج هو تعريف سلسلة L التي تمثل المستوى الحالي (أي القيمة المتوسطة المحلية) من السلسلة كما يقدر من البيانات حتى الوقت الحاضر. يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا: وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث 945 تسيطر على التقارب من قيمة محرف إلى الأحدث الملاحظة. التوقعات للفترة القادمة هي ببساطة القيمة الملساء الحالية: على نحو مماثل، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية. في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة: في النسخة الثانية، ويتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق من قبل كمية كسور 945. هو الخطأ المحرز في الوقت t. أما في النسخة الثالثة، فإن التنبؤ هو المتوسط ​​المتحرك المرجح ألسعاره (أي مخفضة) مع عامل الخصم 1- 945: إصدار الاستكمال الداخلي لصيغة التنبؤ هو أبسط الاستخدام إذا كنت تنفذ النموذج على جدول بيانات: خلية واحدة ويحتوي على مراجع الخلية مشيرا إلى التوقعات السابقة، الملاحظة السابقة، والخلية حيث يتم تخزين قيمة 945. لاحظ أنه إذا كان 945 1، فإن نموذج سيس يساوي نموذج المشي العشوائي (بدون نمو). وإذا كان 945 0، فإن نموذج سيس يعادل النموذج المتوسط، على افتراض أن القيمة الملساء الأولى موضوعة تساوي المتوسط. (العودة إلى أعلى الصفحة). يبلغ متوسط ​​عمر البيانات في توقعات التمهيد الأسي البسيط 945 1 بالنسبة للفترة التي يتم فيها حساب التوقعات. (وهذا ليس من المفترض أن يكون واضحا، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية). وبالتالي، فإن متوسط ​​المتوسط ​​المتحرك بسيط يميل إلى التخلف عن نقاط التحول بنحو 1 945 فترات. على سبيل المثال، عندما يكون 945 0.5 الفارق الزمني هو فترتين عندما يكون 945 0.2 الفارق الزمني هو 5 فترات عندما يكون 945 0.1 الفارق الزمني هو 10 فترات، وهكذا. وبالنسبة إلى متوسط ​​عمر معين (أي مقدار التأخير)، فإن توقعات التمهيد الأسي البسيط تفوق إلى حد ما توقعات المتوسط ​​المتحرك البسيط (سما) لأنها تضع وزنا أكبر نسبيا على الملاحظة الأخيرة - أي. هو أكثر قليلا كوريبرسونسيفكوت إلى التغييرات التي تحدث في الماضي القريب. على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 945 0.2 على حد سواء لديها متوسط ​​عمر 5 للبيانات في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما وفي في الوقت نفسه فإنه don8217t تماما 8220forget8221 حول القيم أكثر من 9 فترات القديمة، كما هو مبين في هذا المخطط: ميزة أخرى هامة من نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة تمهيد التي هي متغيرة باستمرار، لذلك يمكن بسهولة الأمثل باستخدام خوارزمية كوتسولفيركوت لتقليل متوسط ​​الخطأ التربيعي. وتبين القيمة المثلى ل 945 في نموذج سيس لهذه السلسلة 0.2961، كما هو مبين هنا: متوسط ​​عمر البيانات في هذا التنبؤ هو 10.2961 3.4 فترات، وهو ما يشبه متوسط ​​المتوسط ​​المتحرك البسيط لمدة 6. والتنبؤات الطويلة الأجل من نموذج الخدمة الاقتصادية والاجتماعية هي خط مستقيم أفقي. كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو. ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة لنموذج المشي العشوائي. ويفترض نموذج سيس أن المسلسل إلى حد ما يمكن التنبؤ به أكثر من ذلك لا نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما. وبالتالي فإن النظرية الإحصائية لنماذج أريما توفر أساسا سليما لحساب فترات الثقة لنموذج سيس. على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو ما (1) المدى، وليس هناك مصطلح ثابت. والمعروف باسم كوتاريما (0،1،1) نموذج دون كونستانتكوت. معامل ما (1) في نموذج أريما يتوافق مع الكمية 1- 945 في نموذج سيس. على سبيل المثال، إذا كنت تناسب نموذج أريما (0،1،1) دون ثابت لسلسلة تحليلها هنا، فإن ما المقدرة (1) معامل تبين أن يكون 0.7029، وهو تقريبا تقريبا واحد ناقص 0.2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس. للقيام بذلك، مجرد تحديد نموذج أريما مع اختلاف واحد نونسونالونال و ما (1) المدى مع ثابت، أي أريما (0،1،1) نموذج مع ثابت. وعندئذ سيكون للتنبؤات الطويلة الأجل اتجاه يساوي متوسط ​​الاتجاه الذي لوحظ خلال فترة التقدير بأكملها. لا يمكنك القيام بذلك بالتزامن مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عند تعيين نوع النموذج إلى أريما. ومع ذلك، يمكنك إضافة اتجاه أسي ثابت على المدى الطويل إلى نموذج بسيط الأسي تمهيد (مع أو بدون تعديل موسمي) باستخدام خيار تعديل التضخم في إجراء التنبؤ. ويمكن تقدير معدل كوتينفلاتيونكوت المناسب (نسبة النمو) لكل فترة على أنها معامل الانحدار في نموذج الاتجاه الخطي المجهز بالبيانات بالتزامن مع تحول لوغاريتم طبيعي، أو يمكن أن يستند إلى معلومات مستقلة أخرى تتعلق باحتمالات النمو على المدى الطويل . (العودة إلى أعلى الصفحة). البني الخطي (أي مزدوج) تجانس الأسي نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات (التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا لمدة 1- والتنبؤ بالمتابعة عندما تكون البيانات صاخبة نسبيا)، ويمكن تعديلها لإدراج اتجاه خطي ثابت كما هو مبين أعلاه. ماذا عن الاتجاهات على المدى القصير إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة للتنبؤ أكثر من 1 فترة المقبلة، ثم قد يكون تقدير الاتجاه المحلي أيضا قضية. ويمكن تعميم نموذج التمهيد الأسي البسيط للحصول على نموذج تمهيد أسي خطي (ليس) يحسب التقديرات المحلية لكل من المستوى والاتجاه. أبسط نموذج الاتجاه المتغير بمرور الوقت هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم سلسلتين مختلفتين تمهيدهما تتمركزان في نقاط مختلفة من الزمن. وتستند صيغة التنبؤ إلى استقراء خط من خلال المركزين. (ويمكن مناقشة الشكل الأكثر تطورا من هذا النموذج، هولت 8217s أدناه). ويمكن التعبير عن شكل جبري من نموذج التجانس الأسي الخطي البني 8217s، مثل نموذج التجانس الأسي البسيط، في عدد من الأشكال المختلفة ولكن المكافئة. وعادة ما يعبر عن الشكل المعياري للنموذج من هذا النموذج على النحو التالي: اسمحوا S تدل على سلسة سلسة السلسلة التي تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط لسلسلة Y. وهذا هو، يتم إعطاء قيمة S في الفترة t من قبل: (أذكر أنه تحت بسيطة الأسفل، وهذا سيكون التنبؤ ل Y في الفترة t1.) ثم اسمحوا سكوت تدل على سلسلة مضاعفة مضاعفة التي تم الحصول عليها من خلال تطبيق التمهيد الأسي بسيطة (باستخدام نفس 945) لسلسلة S: وأخيرا، والتوقعات ل تك تك. عن أي kgt1، تعطى بواسطة: هذه الغلة e 1 0 (أي الغش قليلا، والسماح للتوقعات الأولى تساوي الملاحظة الأولى الفعلية)، و e 2 Y 2 8211 Y 1. وبعد ذلك يتم توليد التنبؤات باستخدام المعادلة أعلاه. وهذا يعطي نفس القيم المجهزة كالصيغة المستندة إلى S و S إذا كانت الأخيرة قد بدأت باستخدام S 1 S 1 Y 1. يستخدم هذا الإصدار من النموذج في الصفحة التالية التي توضح مجموعة من التجانس الأسي مع التعديل الموسمية. هولت 8217s الخطي الأسي تمهيد البني 8217s نموذج ليس يحسب التقديرات المحلية من المستوى والاتجاه من خلال تمهيد البيانات الأخيرة، ولكن حقيقة أنه يفعل ذلك مع معلمة تمهيد واحد يضع قيدا على أنماط البيانات التي هي قادرة على تناسب: المستوى والاتجاه لا يسمح لها أن تختلف بمعدلات مستقلة. ويعالج نموذج هولت 8217s ليس هذه المسألة عن طريق تضمين اثنين من الثوابت تمهيد، واحدة للمستوى واحد للاتجاه. في أي وقت t، كما هو الحال في نموذج Brown8217s، هناك تقدير ل t من المستوى المحلي وتقدير t ر للاتجاه المحلي. وهنا يتم حسابها بشكل متكرر من قيمة Y الملاحظة في الوقت t والتقديرات السابقة للمستوى والاتجاه من خلال معادلتين تنطبقان على تمهيد أسي لها بشكل منفصل. وإذا كان المستوى المقدر والاتجاه في الوقت t-1 هما L t82091 و T t-1. على التوالي، فإن التنبؤ ب Y تشي الذي كان سيجري في الوقت t-1 يساوي L t-1 T t-1. وعند ملاحظة القيمة الفعلية، يحسب التقدير المحدث للمستوى بصورة متكررة بالاستكمال الداخلي بين Y تشي وتوقعاته L t-1 T t-1 باستعمال أوزان 945 و1-945. والتغير في المستوى المقدر، وهي L t 8209 L t82091. يمكن تفسيرها على أنها قياس صاخبة للاتجاه في الوقت t. ثم يتم حساب التقدير المحدث للاتجاه بشكل متكرر عن طريق الاستكمال الداخلي بين L t 8209 L t82091 والتقدير السابق للاتجاه T t-1. وذلك باستخدام أوزان 946 و 1-946: تفسير ثابت ثابت تمهيد 946 مماثل لتلك التي من ثابت مستوى تمهيد 945. نماذج ذات قيم صغيرة من 946 نفترض أن الاتجاه يتغير ببطء شديد مع مرور الوقت، في حين أن النماذج مع أكبر 946 تفترض أنها تتغير بسرعة أكبر. ويعتقد نموذج مع كبير 946 أن المستقبل البعيد غير مؤكد جدا، لأن الأخطاء في تقدير الاتجاه تصبح مهمة جدا عند التنبؤ أكثر من فترة واحدة المقبلة. (العودة إلى أعلى الصفحة). ويمكن تقدير ثوابت التنعيم 945 و 946 بالطريقة المعتادة من خلال تقليل الخطأ المتوسط ​​التربيعي للتنبؤات ذات الخطوة الأولى. عندما يتم ذلك في ستاترافيكس، وتظهر التقديرات إلى أن 945 0.3048 و 946 0.008. القيمة الصغيرة جدا 946 تعني أن النموذج يفترض تغير طفيف جدا في الاتجاه من فترة إلى أخرى، وذلك أساسا هذا النموذج هو محاولة لتقدير الاتجاه على المدى الطويل. وبالمقارنة مع فكرة متوسط ​​عمر البيانات المستخدمة في تقدير المستوى المحلي للسلسلة، فإن متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي يتناسب مع 1 946، وإن لم يكن يساويها بالضبط . في هذه الحالة تبين أن تكون 10.006 125. هذا هو 8217t عدد دقيق جدا بقدر دقة تقدير 946 isn8217t حقا 3 المنازل العشرية، ولكن من نفس الترتيب العام من حيث حجم العينة من 100، لذلك هذا النموذج هو المتوسط ​​على مدى الكثير جدا من التاريخ في تقدير هذا الاتجاه. ويبين مخطط التنبؤ الوارد أدناه أن نموذج ليس يقدر اتجاه محلي أكبر قليلا في نهاية السلسلة من الاتجاه الثابت المقدر في نموذج سيترند. كما أن القيمة التقديرية ل 945 تكاد تكون مطابقة لتلك التي تم الحصول عليها من خلال تركيب نموذج سيس مع أو بدون اتجاه، لذلك هذا هو تقريبا نفس النموذج. الآن، هل هذه تبدو وكأنها توقعات معقولة لنموذج من المفترض أن يكون تقدير الاتجاه المحلي إذا كنت 8220eyeball8221 هذه المؤامرة، يبدو كما لو أن الاتجاه المحلي قد تحولت إلى أسفل في نهاية السلسلة ما حدث المعلمات من هذا النموذج قد تم تقديرها من خلال تقليل الخطأ المربعة للتنبؤات 1-خطوة إلى الأمام، وليس التنبؤات على المدى الطويل، في هذه الحالة لا يوجد 8217t الاتجاه الكثير من الفرق. إذا كان كل ما كنت تبحث في 1-خطوة قبل الأخطاء، كنت لا ترى الصورة الأكبر للاتجاهات أكثر (مثلا) 10 أو 20 فترات. من أجل الحصول على هذا النموذج أكثر في تناغم مع استقراء العين مقلة العين من البيانات، يمكننا ضبط ثابت الاتجاه تجانس يدويا بحيث يستخدم خط الأساس أقصر لتقدير الاتجاه. على سبيل المثال، إذا اخترنا تعيين 946 0.1، ثم متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي هو 10 فترات، وهو ما يعني أننا متوسط ​​متوسط ​​الاتجاه على مدى تلك الفترات 20 الماضية أو نحو ذلك. Here8217s ما مؤامرة توقعات يبدو وكأننا وضعنا 946 0.1 مع الحفاظ على 945 0.3. هذا يبدو معقولا بشكل حدسي لهذه السلسلة، على الرغم من أنه من المحتمل أن يستقضي هذا الاتجاه أي أكثر من 10 فترات في المستقبل. ماذا عن إحصائيات الخطأ هنا هو مقارنة نموذج للنموذجين المبينين أعلاه وكذلك ثلاثة نماذج سيس. القيمة المثلى 945. لنموذج سيس هو تقريبا 0.3، ولكن يتم الحصول على نتائج مماثلة (مع استجابة أكثر قليلا أو أقل، على التوالي) مع 0.5 و 0.2. (A) هولتس الخطي إكس. تمهيد مع ألفا 0.3048 وبيتا 0.008 (B) هولتس الخطية إكس. تمهيد مع ألفا 0.3 و بيتا 0.1 (C) تمهيد الأسي بسيط مع ألفا 0.5 (D) تمهيد الأسي بسيطة مع ألفا 0.3 (E) بسيطة الأسي تمهيد مع ألفا 0.2 احصائياتهم متطابقة تقريبا، لذلك نحن حقا يمكن 8217t جعل الاختيار على أساس من 1-خطوة قبل توقعات الأخطاء داخل عينة البيانات. وعلينا أن نعود إلى الاعتبارات الأخرى. إذا كنا نعتقد اعتقادا قويا أنه من المنطقي أن يستند تقدير الاتجاه الحالي على ما حدث على مدى السنوات ال 20 الماضية أو نحو ذلك، يمكننا أن نجعل من حالة لنموذج ليس مع 945 0.3 و 946 0.1. إذا أردنا أن نكون ملحدين حول ما إذا كان هناك اتجاه محلي، فإن أحد نماذج سيس قد يكون من الأسهل تفسيره، كما أنه سيوفر المزيد من توقعات منتصف الطريق للفترات الخمس أو العشر القادمة. (العودة إلى أعلى الصفحة). أي نوع من الاستقراء هو الأفضل: أدلة أفقية أو خطية تشير إلى أنه إذا تم تعديل البيانات (إذا لزم الأمر) للتضخم، فقد يكون من غير الحكمة استقراء الخطي القصير الأجل الاتجاهات بعيدة جدا في المستقبل. إن الاتجاهات الواضحة اليوم قد تتراجع في المستقبل بسبب أسباب متنوعة مثل تقادم المنتج، وزيادة المنافسة، والانكماش الدوري أو التحولات في صناعة ما. لهذا السبب، تجانس الأسي بسيط غالبا ما يؤدي أفضل من خارج العينة مما قد يكون من المتوقع خلاف ذلك، على الرغم من كوتنيفيكوت الاتجاه الأفقي الاستقراء. وكثيرا ما تستخدم أيضا تعديلات الاتجاه المخففة لنموذج تمهيد الأسي الخطي في الممارسة العملية لإدخال ملاحظة المحافظة على توقعات الاتجاه. ويمكن تطبيق نموذج ليس المائل للاتجاه ليس كحالة خاصة لنموذج أريما، ولا سيما نموذج أريما (1،1،2). ومن الممكن حساب فترات الثقة حول التنبؤات طويلة الأجل التي تنتجها نماذج التمهيد الأسي، من خلال اعتبارها حالات خاصة لنماذج أريما. (حذار: لا تحسب جميع البرامج فترات الثقة لهذه النماذج بشكل صحيح). يعتمد عرض فترات الثقة على (1) خطأ رمز في النموذج، (2) نوع التجانس (بسيط أو خطي) (3) القيمة (ق) من ثابت ثابت (ق) و (4) عدد الفترات المقبلة كنت التنبؤ. بشكل عام، انتشرت الفترات بشكل أسرع مع 945 يحصل أكبر في نموذج سيس وانتشرت بشكل أسرع بكثير عندما يتم استخدام خطية بدلا من تجانس بسيط. ويناقش هذا الموضوع بمزيد من التفصيل في قسم نماذج أريما من الملاحظات. (العودة إلى أعلى الصفحة.)

No comments:

Post a Comment